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A Global Optimal Sliding-Mode Control for the Minimum Time
Trajectory Tracking with Bounded Inputs

Choi, Hyeung-sfk"
Department of Mechanical and Information Engineering, Korea Maritime University

A new design of the sliding mode control is proposed for the uncertain linear time-varying
second order system. The proposed control drives system states to the target point in the
minimum time with specified ranges of parametric uncertainties and disturbances, One of the
advantages of the proposed control scheme is that the control inputs do not go beyond
saturation limits of the actuators. The other advantage is that the minimum arrival time and the
acceleration of the second order actuators system can be estimated with given parametric bounds
and can be expressed in the closed form; conversely, the designer can select actuators based on
the condition of the minimum arrival time to the target point. The superior performance of the
proposed control scheme to other sliding mode controllers is validated by computer simulations.
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1. Introduction

Sliding mode control(SMC) originated from
the variable structure control system was
proposed and elaborated in the early 1960's in the
Soviet Union by Emelyanov (1967) and Ikis
(1976). SMC has been extensively studied due to
invariance properties and the robustness against
uncertain system parameters and disturbances. An
extensive survey on the sliding mode control was
performed. Fundamental theory, main results,
and practical applications of variable structure
control was introduced by Hung (1993). Recently,
Kim and Lee (2000) devised a SMC with per
turbation compensation to reduce the low-fre
quency tracking errors.

To achieve fast path tracking, an improved
sliding mode control employing an optimal
sliding surface was proposed by Ashchepkov
(1983). The optimal sliding surface was decided
by minimizing error performance index for a
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given initial condition. To improve the tracking
behavior of the nonlinear second order dynamical
systems, a moving sliding surface was proposed
by Choi and Park (1994). The surface is initially
designed to pass given initial errors and
subsequentially is moved toward a fixed sliding
surface.

Despite of the invariance properties and the
robustness, Slotine (1991) presented that the con
ventional SMC had important drawbacks limiting
its applicability, such as chattering or large con
trol input requirement. Also, response of conven
tional SMC is sensitive to system perturbation
during the reaching phase. The condition of the
robustness of the conventional SMC is based on
the assumption of the unlimited control inputs.
Conversely, the robustness properties are guaran
teed only as long as the control actuators do not
saturate. The input limitation is one of important
issues need to be considered for controller design
in realistic and practical applications. To solve
the robustness problem of the conventional SMC
under the input torque saturation, Madani
Esfahani et al. (1990) proposed a scheme to esti
mate the region of the asymptotic stability with
bounds on the control inputs but, which is not
applicable due to excessive chatter. Lu and Chen
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(1995) devised a global sliding mode control
scheme (GSMC), which ensures sliding behaviour
throughout an entire response. With given uncer
tainty bounds, the merit of this control scheme is
that the maximum and minimum values of the
control action is estimated and the range of
allowable reference input is obtained under the
input limits.

In this paper, a model of the second time
varying system with uncertain parameters is spec
ified in Sec. 2. To control the system, we propose
a global optimal sliding mode control (GOSMC)
for tracking to the reference input along the min
imum time trajectory in Sec. 3. In Sec. 4, the
minimum arrival time expressed in the closed
form is derived. Finally, computer simulation
results are shown and discussed.

3. Design of Global Optimal Sliding
Mode Controller

3.1 Global sliding mode control
To control the uncertain system defined in Eq.

(I), a SMC with estimates of the uncertain
parameters, shown in Eq. (4), is applied

u= -1J(ex-}) +alx+~-{LI/31ex
-} I+Llad x I +Lla:z Ix I+D}sgn(s) (4)

where

1J
/3max+pmln , LI/3

pmax-/3mJn

2 2
A illmax+ almln , Llal almax - almln
al 2 2
A a:zmax + £l:zmin ,Lla:z a:zmax- £l:zmin
a:z 2 2

x+aiU)x+a2(t)x=b(t)(u+d(t» (I)

2. Model of the System

Since all the physical systems have input torque
limits, the bounds of the input torques are defined
as

We consider the linear time varying second
order system with parameter uncertainties and
disturbances.

(5)

(6a)

(6b)

(6c)

s=e+ee-j(t)

where error state is e=x-r with reference step
input r >0, where the sign of r represents the
direction of input. When r<O, similar approach
except for the sign of input can be made. The
forcing function drives the system states in any
state space to the switching plane directly without
reaching phase such that the GOSMC is robust
during the reaching phase. In this paper, we
propose a new forcing function which drives the
system states along the minimum time trajectory.
In addition to jumping to switching plane, the
proposed forcing function makes helps us to cal
culate the minimum arrival time at the target
point in a closed form. In order for the GOSMC
to manage the system states to maintain on the
sliding surfaces, the conditions on the forcing
function j(t) should be satisfied as

j(O)=eo+eeo
j(t) ~ 0 as t ~ 00

i(t) should be bounded

The proposed control can be applied to higher
order systems similarly, but closed-form solution
may not be obtained. The sliding mode control
suggested by Lu and Chen (1995) is trivial except
for the forcing function j(t), where the sliding
mode is defined in conjunction with j(t) as

(3)

(2)

Umln~ U ~ Umax

/3mln~b-l(t)~/3max I
almln~ b-1(t)al(t)~ almax

a2mln~ b-1( t)a2(t) < a:zmax

~axld(t)I<D J

In this paper, a global optimal sliding mode
control algorithm is devised, which drives the
system with the uncertain parameters and
disturbances, to the target point in the minimum
time with limited inputs.

where we suppose that system parameter al(t), a2
(t), and b(t) are difficult to measure and the
disturbance is unknown except their upper and
lower bounds as follows:

The stability of the GOSMC satisfying the
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4. Estimation of the Minimum
Time Trajectory

Since the closed-loop system is asymptotically
stable, S=5=0 becomes satisfied for t~O. Using
this, we have the following equation by exploiting
Eq. (5)

VZ[S;Jr-1
! i i ,

a tb tf t
(b) Velocity

:d~----l
-a tb tr t

(c) Acceleration

Fig. 1 The minimum time trajectory

The proposed control yields the asymptotic
stability of the uncertain second order system.
However, the input torques of the system are
bounded as in Eq. (3). Within this bounded
range, we design a control scheme to estimate the
minimum arrival time to the reference inputs. To
do this, we divide the proposed controller into
two parts according to its magnitude depending
on the sign of s as follows:

uh=,B(-cx+iHalx+aZx+{LI,8 I-cx

+i I+da, IxI +Llaz Ix I +D} for S<0
( lOa)

Ul=,B( -cx+i)+alx +a2X-{LI,8 I -cx

+i I+da, IxI +Llaz Ix I +D} for S >0.
(lOb)

(II)

I X
0 tb tf

(a) Position

x=-cx+i.

Rewriting Eq. (10) using Eq. (II) yields

x=.E...tZ 1
x=~t I for O~t<tb (8a)

x=a=~Jtb

az+ a tz l
x=r-'[tf atft-'[ I
x=a(tf-t) for tb~t~tf

x=-a J

conditions (6) can be shown using Lyapunov
function V=(I/2)sz>0. The negative definite of
the time derivative of the V except for s=O
ensures that the proposed control scheme guaran
tees asymptotic stability. The proof of the stability
of the closed system is simple and was already
shown by Luh and Chen (1995).

(8b)

3.2 Design of the forcing function
In the stability analysis, the asymptotic stability

of the closed loop system is guaranteed if the
forcing function satisfies the condition Eq. (6).

This, eventually, means that s=O is satisfied. In
this paper, we propose the following desired
trajectory function that not only satisfies the con
dition in Eq. (6) but also is the minimum arrival
time trajectory for pure mass systems. The initial
and final conditions of the function are specified
as follows

for t=O : x(O)=O, x(O)=O }
(7)

for t~tf : x(tf)=r, X(tf)=O

where tf is the final arrival time. The boundary
conditions of the desired trajectory are specified
as

where v is the maximum velocity, a is the accel
eration, and tb is the mid travel time. The profile
of the trajectory is shown in Fig. I.

The forcing function is specified as

f(t)=x+c(x-r)

(
a Z ) for O~t<tb (9a)

=at+c '[t-r

f(t)=a{(tf-t)+c(tft- ~ t} -~ t Z)}

for bb~t~tf (9b)

where f(t)=O for t>tf.
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Substituting the solution in Eq. (21) into Eq. (16)

In Eq. (20), for each time division, we get the

solution of d:fth =0 for t ~o as

tain system with the bounded input. We express
the maximum and minimum values of the Eqs.
(14) and (15) as

(19)

(16)

(17)

max
t~O u(th=aTmax+D,

min
t~O u(t)I=aTmJn-D.

The input torques are bounded as specified in Eq.
(3). The physical bounds always exist on all the
systems. Hence, for the realistic and practical
application, the applied input values should be
within the physical bounds. The maximum and
minimum input values are bounded as

UmJns;.minu(t)~max u(t)s;. Umax (18)

Employing the specified torque bounds, we can
range the permissible acceleration of the system as
follows:

Umln+D s;. as;. Umax - D
Tmln Tmax

To estimate the minimum time of the trajectory
tracking, we need to obtain the maximum value of
the u« in Eq. (16) and the minimum value of the
u, in Eq. (17). To do this, we should differentiate
u« and u, with respect to time. The trajectory
functions are bounded and closed except the ac
celeration profile at the mid time tbfor tE [0, tf].
At this time, we can not differentiate but can get
the limit value. In addition to this, we can get
several points where the time derivative of the
control inputs in Eqs. (14) and (15) become zero.
The maximum or minimum values are obtained
out of these candidates. Differentiating Eqs. (14)
and (15) with respect to time within the
differentiable range yields

du; + e.&=alinaxa £l2maxat lor os;t< tb}

du«&=-a1maxa+£l2maxa(t/-t) for tb~t~t/

(20)

W=,Bmax+almaxt+ ~ £l2maxt2

X = - ,Bmln+almax(t/- t) -£l2max

(~ t}-t/t+ ~ t2
) .

u,,=hx+alx+~+{.1,B1 xl
+.1atl XI+.1£l21 x] +D} (l2a)

ul=hx+alx+~-{.1,B1xl +.1allXI
+.1£l21 x 1+D} (l2b)

Y = (,Bmln+a1mlnt +£l2mJnt2
)

Z = - ,Bmax+almln( tf - t) - a2mJn

(~ t2f-t/t+ ~ f)

where

Equation (12) can be rearranged according to the
input profile and trajectory tracking time. Equa
tion (12a) is expressed as:

u,,=.BmaxX+a.maxX+£l2muX+D for Os;.t<tb}
u,,=PmmX+a.maxX+£l2muX+D for tbs;.ts;.t/ .

(13a)

For the time division 0< t< tb, we have 1x 1=
x=a, and for tbs;.ts;.tf, also, we have 1x =
x=-a. With the same procedure, Eq. (l3b) is
expressed as

ul=,B~+almlnX+a'lmtnX-D for Os;.r<tb }
ul=,B~+almlnX+tl2mJnx-D for tbs;.rs;.t/

(13b)

To estimate the maximum of the input, we
snbstitute the Eq. (8) with r= 1/4at} into Eq.
(l3a), which yields

u,,=aW+D for Os;.t<tb
aX+D for tbs;.ts;.t/ (14)

where

With the same approach, substituting the
functions of the minimum time trajectory into Eq.
(12b) and arranging it yields

ul=aY-D for Os;.t<tb}
=aZ-D for tbs;.t~tf (15)

The maximum of u" in Eq. (14) and the minimum
of u, in Eq. (15) exists at a certain time in the
tracking time range. Using the maximum and
minimum values of the input we can estimate the
maximum value of the acceleration of the uncer-
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yields

u» I t=t ..=aTmax I t=t ..+D for tb~t~tf'

(22a)

(25c), and (25d) as

min u(t)=min{ut I t=t."

Uti t-I ..., Uti t=t,}for tb~t~tf' (26)

At initial, final, and mid points of tracking time,
the values of the control inputs are calculated as:

u« I t=o=aPmax+ D (22b)

u« I t=to-e
1= a(Pmax+ atmaxtb+2C12taax~)+D(22c)

1=a( - plfIIn+ Clunaxtb +2C12taaxt~) +D

(22d)

1u« I t=t,=a(-Pmm+2tl2maxff)+D. (22e)

Since the input values of the Eqs. (22b) and (22d)
are obviously smaller than that of the Eq. (22c),
the maximum input value can be written as

max u(t)=max{Uh I t-t... u« I t-to-e,
u« I t=t,} for O~t<tb (23)

In the same way as shown in obtaining the
maximum value, the minimum value candidates
of u, can be obtained. By referring to the
trajectory profile, we can get a minimum candi
date tid by differentiating u, as

Substituting tid in Eq. (24) into Eq. (17) yields

Uti t=t,.=aTmln I t=t,.-D for tb~t~tf'

(25a)

We can get other minimum candidates at the piece
wise continuous mid and final points of the
tracking time, which can be obtained as

Uti t=to-e=a(Pmln+allfllntb+£l2mint~)-D

(25b)

Uti 1=1...

=a(-Pmax+allfllntb+ ~ £l2mint~)-D

(25c)

Uti t=I,=a(-Pmax+ ~ £l2mint})-D. (25d)

Since the value of Eq. (25b) is bigger than that of
Eq. (25c), the minimum value of the control input
is selected among the candidates in Eqs. (25a),

In this paper, the goals of the proposed control
scheme are to achieve tracking of the desired
trajectory and to estimate the arrival time at the
reference input of the second order time-varying
system with unknown but bounded parameters
and disturbances. The proposed scheme is more
realistic and applicable than the scheme to find
the range of allowable reference input proposed
by Lu and Chen. One of the eminent merits of the
proposed control scheme is that we can get the
closed-form solution of the arrival time tr which
we can calculate easily without numerical
approaches.

In the electric motor system, where the stiffness
coefficient is not considered such that a2=0, the
minimum arrival time is expressed in a closed
form. To derive the closed-form solution, we use
the Eqs, (21) through (26). Since az is zero, there
does not exist a solution in Eq. (21). By
evaluating the values of Eqs. (22c) and (22d), we
can tell that the value of Eq. (22c) is larger than
that of Eq. (22d). Hence, the maximum value
becomes

max U(t)=Uh I t=h-o for O~t. (27)

Also, in finding the minimum value, since az=O,
we know that there does not exist a solution in
Eq. (24). By evaluating the last two Eqs. (25c),
and (25d), we can tell that u, I I=if is the mini
mum, which is expressed as

min u(t)=utl 1=1, for O~t (28)

From the minimum and maximum values, we can
decide the minimum arrival time within the input
value limit. By substituting a=4r/ r} into Eqs
. (22c) and (25d), and arranging them within the
bounded region in Eq. (3), we obtain the follow
ing equations as

4r
tr(Pmax+a1maxtb)+D~ Umax (29)

4r
Umln~-trPmax-D. (30)

Rearranging Eq. (29) yields second order ine
quality as:
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(33)

(Umax- D)tJ -2ralmaxt.f-4rp'max~0. (31)

By solving the Eq. (31), the minimum time candi
date to arrive at the desired final position r can be
obtained in a closed form as

r{1J.max+.fy2trlm8X+4rPmax(Umax-D)
Umax-D

(32)

In the same way, another minimum time candi
date can be obtained by solving the inequality
(30) as follows:

t -I 4rpmax
llIIiII- -UmJn-D'

parameters are uncertain, but their upper bounds
can be specified in general.

The values of the parameters for a 700 W
permanent-magnet synchronous BLDC motor are
taken from those of Lu and Chen's reference to
compare controller performance. The bounds on
the uncertain parameter, disturbances, and con
trol torques are specified as

P'mJn=2.8743 X10-4:S::b-I:S::4.3114X 1O-3= P'max
{lJ.mJn= 1.6679 X 1O-3:s:: b-1a

l :S:: 3.7528 X 10-3

=(1J.max

Id 1<0.1 =D(V)
-S:S::max u:S::S (V)

4. Computer Simulation

where 0 is the position angle, al=B/J is com
posed of the damping coefficient B and the
moment of inertia J, b=KtKc/ J is composed of
the torque coefficient of motor K, and PWM
inverter currents Ks. The disturbance d is the
Coulomb friction. The only parameter K, is given
in the catalogue, and other parameter should be
measured or be estimated. In this reason, the

The minimum arrival time is

tmJn=max{thlllill, tllllill} (34)

As shown in Eqs. (33) and (34), the minimum
arrival time is expressed in closed form clearly.
Therefore, we can easily calculate the minimum
arrival time at the desired final condition. Con
versely, we can easily design or select appropriate
motors to drive mechanical systems according to
control specifications

4.1 Model of the motor system
In the computer simulation, we apply the

proposed GOSMC to the BLDC motor system,
and show that the performance of the proposed
control scheme is more realistic and superior to
that of the GSMC and SMC. We apply the
proposed GOSMC to the motor system with un
known but bounded parameters and disturbances,
and show that the estimated minimum arrival
time becomes quite near to the simulation result.
We describe the well known motor dynamics as

4.2 Results of the computer simulation and
comparison

In the simulation, we set the desired final posi
tion r=15(rad), and set system parameters aI, b,
and dto 8, 2.5X 10', and 0.08 sgn(O), respectively.
With given parameter bounds, we can calculate
the maximum acceleration, the maximum input
torques, and the minimum arrival time using Eqs.
(27), (28), and (34), which are

!mJn=0.2415(s),
a=4r/t} = 1028.4(m/s2

) ,

max U=Uh I t=o.l2ll5=5(V)

where tmJn=t.f is obtained using the closed-form
equation. We compare the calculated values with
simulation results.

In the simulation, we compared three different
controllers: GOSMC, GSMC, and the conven
tional SMC. We analyze the performance of the
proposed controller by evaluating the simulation
results. Especially, we compares the controllers in
two aspects: the desired trajectory tracking capa
bility and the obeyance of control torque limits.

According to the simulation results; it took O.

242 (seconds) for GOSMC to arrive at the refer
ence input as shown in Fig. 4(a), but took O. 4
(seconds) for GSMC in Fig. 3(a), and even took
more than 0.5 (seconds) for SMC controller in
Fig. 2(a). The arrival time shown in GOSMC is
the fastest out of the three controllers. The reason
is that GOSMC utilizes the control torques fully
within the torque limits but not the other
controllers as shown in Figs. (b). The SMC shows

(35)8+ad)=b(u+d)
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Fig. 2 SMC:(a) Reference trajectory tracking (b)
Control input

(b)

Fig. 4 GOSMC: (a) reference input tracking (b)
control input

15-F=========::::::~==j GOSMC does not trespass against the control
torque limits as shown in Fig. 4(b). Though
GSMC does not trespass against the control
torque limits, it does not fully exploit the control
torques.

One of the eminent advantages ofGOSMC is to
estimate the arrival time at the reference input.
The estimated arrival time based on the closed
-form equation become quite near to simulation
results. Hence, we don't have to simulate the
closed-loop system by using a numerical
algorithm such as the Runge-Kutta method. The
estimation scheme of the arrival time in conjunc
tion with the maximum acceleration estimation
would be very helpful in selecting and designing
motor systems.

0.'
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iii
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5. Conclusion
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·3o:l:.o~---------:;.----:r:-----'

(b)

Fig. 3 GSMC: (a) reference input tracking (b) con
trol input

poor response despite of applying excessive con
trol torques as shown in Fig. 2(a). GOSMC does
not show any overshoot or chattering over transi
ent mode despite of the fastest dynamic tracking.

A global optimal sliding mode control
(GOSMC) was proposed to control the second
order system with uncertain but bounded
parameters and disturbances within limited con
trol input. The proposed controller drives the
system states along "the minimum time
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trajectory" within the control input limit. If the
desired final and the bounds of the uncertain
parameters and disturbances are specified, the
arrival time and the acceleration are expressed in
closed-form equations. The proposed controller
was applied to the BLDC motor with uncertain
parameters. Simulation results of the proposed
controller are quite similar to the closed-form
equation results, and showed the best perform
ance compared with other SMCs. The closed
-form equation can be utilized in selecting the
actuators for the mechanical system without a
computer simulation.
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